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NOMENCLATURE 

RF attenuation factor; 
nondimensional attenuation factor, by,, ; 
thermal coefficient of absorption; 
nondimensional thermal coefficient of absorption, 

l,bY; 
kc; 

specific heat ; 
RF power incident at surface 1; 
RF power incident at location 1; 
thermal conductivity; 
distance from surface 1; 
temperature; 

k 
nondimensional temperature, -T; 

Ilby; 

mean temperature ; 
temperature at surface 1; 
mean temperature over distance I from surface 1; 

nondimensional fluid velocity,? V,; 

mean fluid velocity; 
x direction fluid velocity; 
volumetric heat generation rate; 
direction parallel to surface 1; 
nondimensional length, x/y, ; 
direction perpendicular to surface 1; 
nondimensional length, y/y, ; 
channel half width. 

Greek symbols 
a’, RF attenuation factor; 
P. fluid density. 

INTRODUCTION 

THE THERMAL consequences of heat generation in flowing 
liquids is of importance in the design and optimization of 
diverse systems including nuclear reactors as well as high 
power electromagnetic transmission circuits. Much of tire 
literature in this field deals with constant or axially varying 
internal heat sources and only a limited number of reported 
studies have examined the effects of more complex heating 
functions, e.g. [l, 21. In particular, scant attention has been 
paid to exponentially varying heat generation functions of the 
type encountered in the irradiation of fluids by electromag- 
netic energy beams. 

This application category is epitomized by energy sinks or 
so-called ‘water loads’ in high power microwave systems 
where RF energy is beamed directly into a liquid stream 
flowing past an RF transparent surface. The interaction of the 
liquid molecules with the electric field results in the dissi- 

pation of the microwave energy and the local generation of 
heat in the fluid. Material and electrical constraints, pertinent 
to such an energy sink, dictate a maximum channel wall 
temperature and often require that no boiling occur in the 
Ruid. As a result, a precise knowledge of the temperature 
profile in the fluid and especially along the channel wall is 
often crucial to the success of such systems. 

Under a wide variety of conditions, the volumetric heat 
dissipation function associated with the liquid-RF interac- 
tion decreases exponentially from the transparent wall of the 
liquid channel and, with the nomenclature of Fig. 1, is 
expressible as 

kVj = 0.23 a’l,exp(-0.231a&,,). (1) 

The attenuation factor, a’, in itself a strong function of 
temperature and frequency [3] but over a modest tempera- 
ture range and at a fixed electromagnetic frequency can be 
represented exponentially as a’ = b eeCT. 

Introducing this relation into equation (I), the internal heat 
generation rate is given by 

w, = (0.23 beeCT)(I, e-0~231be-Crm~‘) (2) 
where it is to be noted that 4 is dependent on both the local 
temperature Tand the average fluid temperature across the 
path length l, i.e. T,, p 

THERMOFLUID FORMULATION 

By appropriate simplification of the Navier-Stokes (Mom- 
entum Conservation) equations for fully-developed, constant 
property laminar flow between stationary parallel surfaces, it 
is possible to obtain the well known laminar velocity profile, 
e.g. [4] : 

v= ;vmr1 - (Y/Ya)rl. (3) 

The general differential energy equation, which relates the 
rate of temperature increase of a fluid element moving in a 
stream to the heat conducted across its boundaries and 
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FIG. 1. Coordinate system for irradiated channel. 
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FIG. 2. Temperature profiles for irradiated channel, h = 50. ? varying 

internally generated, for two-dimensional steady state, fully- 
developed flow in a rectangular channel, can be expressed as 

The expression for W, equation (2), with I replaced by J,, + J 
(see Fig. 1) can now be inserted to complete the formulation of 
the energy equation, i.e. 

= _ (oJ3 1 be-‘r)(e-O 231YrrtY,be+s,be 
I 

1 ~w.,,,+ r, (5) 

With the exception of the radiationally opaque and near 
transparent limits, discussed in the next section, equation (5) 
is not easily amenable to solution and numerical techniques 
must be used. To maximize the utility of the solution. 
equation (5) can be non-dimensionalized by defining the 
following parameters : 

v = pc,y() VJk x = x/v0 

T= kT/hl,& r = ?i.vo (6) 

c’= I,by;C/k I? = rob. 
Introducing these parameters into equation (5), the energy 

equation takes the form. 

An interactive computer program for solving elliptic boun- 
dary value problems [5] was used interactively to generate the 
temperature fields defined by the solution of equation (7). 

a. Numerical solution 
The non-dimensional temperature, 7, in equation (7) can 

be seen to depend on the non-dimensional distance, j. 
attenuation factor, 6 and the thermal coefficient of atte- 
nuation, C. Consequently, the temperature profiles across the 
channel, i.e. T(j), were calculated for pre-determined values 
of 6 and E, spanning the parametric range ofinterest. Figure 2 
highlights the influence of? on the temperature protile and 
reveals that this parameter has only a marginal influence on 7 

in the channel. Alternately, as can be seen in t‘lg. 3, both the 
temperature profile and the surface temperature are sensitive 
to the value of the dimensionless attenuation factor. E 

b. Opaque limir 

The form of the heat generation function, equation (2). 
suggests that two simple limits can be established for the 
temperature profile in the channel. At one limit. correspond- 
ing to very high values of h (or h), the heat generation rate is 
strongly asymmetric and W falls rapidly with increasing 
distance from the RF beam entry surface. An upper limit on 
the surface temperature can thus be obtained by assuming the 
fluid to be radiationally opaque and all heat generation to 
occur in a vanishingly thin fluid layer or essentially a! the 
channel wall. 
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FIG. 3. Temperature profiles for irradiated channel. c’ = 10. 6 
varying. 
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Solution of the energy equation, equation (4), with W= 0 
and (aT/dy)_,, = 1,/k, yields the temperature profile 

T- Tm+[;+;(;,‘-k(i)‘-0.1451. (8) 

Solving equation (8) for the wall temperature and re- 
expressing this relation in terms of the non-dimensional 
parameters, the opaque limit on 7, - F,,, is found as 
(T, - Tm)opaq”e = 1.74/K 

c. Near transparent limit 
For low values of b (or b) the fluid is nearly transparent and 

only mildly attenuates the incident radiation. Consequently, 
if the second channel wall is also RF transparent, the 
radiation traversing the channel will result in nearly uniform 
heat generation. If, on the other hand, the channel walls are 
internally reflective, the radiation arriving at surface 2 will be 
reflected back towards surface 1 and the entering radiation 
will eventually (following many multiple reflections) be 
absorbed nearly uniformly in the fluid. 

Returning to equation (4) and setting W equal to a 
constant, IV= 1,/2y,, the channel temperature profile is 
found as 

In addition to serving as a convenient limiting expression, 
equation (9) was used to check the accuracy of the numerical 
solution. One hundred iterations on a relatively coarse nodal 
matrix, of 11 nodes across and 20 nodes along the channel 
wall, yielded less than 8 % discrepancy between the numerical 
solution and analytical values calculated at the nodal points. 
Since the number of iterations is proportional to the number 
of nodes, the above nodal matrix was employed in all the 
numerical calculations. 

Solving equation (9) for y = y, and re-expressing in terms 
of the dimensionless parameters, the lower near-transparent 
limit on the wall temperature is found as (T- T,,kranspor, = 
0.0428/b. 

The two limiting equations for (7; - T) are plotted in Fig. 
4 and are seen to properly bound the numerically calculated 
values of the dimensionless wall-to-mean fluid temperature 
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difference. However, the factor of approximately 18 separat- 
ing the lower and upper limits on (;i, - Tm) suggests that for 
all but extreme values ofb,i.e. b << 1 orb >> 100, the numerical 
results must be used to determine the desired temperature. 

d. General considerations 
Due to the particular choice of non-dimensionalizing 

parameter, increasing attenuation, i.e. higher 6 values, results 
in smaller values of Ti - Tm. However, a review of the 
pertinent equations shows that, as anticipated, increasing b 
leads to a progressively larger temperature difference, 
Ti - T,, as the solutions approach the radiationally opaque 
limit. 

Emphasis throughout this discussion has been placed on 
the temperature profile, relative to the mean liquid tempera- 
tures in the channel. The reader is reminded that for an 
axially-invariant heating function, the axial gradient equals 

dT,/dX = 1,/2pc,y,V,. (10) 

Consequently, once the inlet liquid temperature is known, 
equation (10) suffices to calculate T,, at every location in the 
channel. 

Acknowledgements - The author is indebted to D. L. 
Cochran and B. B. Mikic for their aid in the formulation of the 
‘water load’ problem. 

1. 

2. 

3. 

4. 

5. 

REFERENCES 

A. L. Loeffler, Jr., Heat transfer in fully developed flow 
between parallel plates with variable heat sources, Nucl. 
Sci. Engng 2, 547-567 (1957). 
L. Topper, Heat transfer in cylinders with heat gene- 
ration, A. I. Ch. E. JI 1, 463-466 (1955). 
A. Von Hippel, The dielectric relaxation spectra of water, 
ice and aqueous solutions and their interpretation, 
Technical Report II, Laboratory for Insulation Research, 
MIT, Cambridge, Mass (1967). 
W. M. Rohsenow and H. Choi, Heat, Mass and Momen- 
tum Transfer, Prentice Hall, Englewood Cliffs, NJ (1961). 
C. C. Tillman, Jr., EPS: An interactive system for solving 
elliptic boundary value problems, MIT report MAC-TR- 
62, Cambridge, Massachusetts (1969). 

OPAQUE LIMIT, = 0.74 /ii 

A-NUMERICALLY CALCULATED 

VALUES OF i,-7, 

TRANSPARENT LIMIT, = 0.0420/b A 

I I I I I I 
IO 20 30 40 50 60 70 80 90 100 

b 

FIG. 4. Surface temperature dependence on 6. 


